NOTE

Strong Metal-Oxide Interaction Induced by the Reduction of NiTa₂O₆ Supported on SiO₂

We have recently shown that ternary oxides of rhodium such as RhNbO₄, RhVO₄, and MnRh₂O₄ are formed almost exclusively on an SiO₂ support by mutual interaction between Rh and the oxides (niobia, etc.) during calcination treatment in O₂ or in air at high temperature (700-900°C) (1-3), and demonstrated that these ternary oxides (or the precursors) play important roles not only in the catalytic properties but also in the morphology changes of supported metal catalysts. The characteristic features of these ternary-oxide catalysts are as follows (1-9): (i) Rh metal is dispersed on SiO₂ after the decomposition of the ternary oxides by H₂ reduction; (ii) strong metal-oxide interactions are induced by H₂ reduction; (iii) the catalytic activity and selectivity can be controlled by the metal-oxide interactions; and (iv) regeneration of the ternary-oxide compounds can be achieved by calcination treatment.

Relatively few studies have been performed for the formation of other ternary-oxide systems such as nickel (e.g., NiNb₂O₆) (10, 11). The preparation method using citrate solutions (12, 13) has proved to be effective for the formation of an NiNb₂O₆ compound on an SiO₂ surface (11). This paper reports the formation of NiTa₂O₆ supported on SiO₂ by the citrate method. It is well known that the physical properties and structure of tantalum are very similar to those of niobium. However, tantalum oxide systems have recently attracted an interest because of the unique catalytic properties (14, 15) which are different from those of niobium oxide. In this work, the nature of metal-Ta₂O₅ interaction has been compared with that of metal-Nb₂O₅ interaction (11). The structure change of NiTa₂O₆ during the calcination and reduction treatments was studied by X-ray diffraction. The activity measurements of ethane hydrogenolysis were chosen as a test reaction (7, 16) to investigate the extent of the metal-oxide interaction after the decomposition of the NiTa₂O₆ compound by H₂ reduction.

Nickel citrate solution was prepared by dissolving hydrous $Ni(CH_3COO)_2$ in a 1.5 M (1 M=1 mol dm⁻³) citric acid, and aqueous tantalum oxalate solution was used to prepare a mixed citrate solution of nickel and tantalum in a separable flask (13). A calculated amount of SiO_2 (JRC-SIO-7) was added, and the system was evacuated

and heated to evaporate the water at 60°C (12, 13). The thoroughly dried solid was calcined in air at high temperature (550-700°C) to obtain a NiTa₂O₆/SiO₂ catalyst. For comparison, a Ta₂O₅-Ni/SiO₂ catalyst was prepared by incipient wetness impregnation of aqueous solutions of Ni(CH₃COO)₂ and tantalum oxalate followed by the calcination treatment. The Ni content of the catalysts was 5.0 wt%, with an atomic tantalum-to-nickel ratio (Ta/Ni) of 2 or 4. X-ray diffraction (XRD) patterns of the catalysts after the calcination and/or reduction treatments were obtained with an X-ray diffractometer (Rigaku Co., Ltd.) equipped with a graphite monochromator for $CuK\alpha$ (40) kV, 30 mA) radiation (6). The ethane hydrogenolysis activity was measured in a microcatalytic pulse reactor (4-7). Prior to each activity test, the sample in the reactor was treated in O₂ at 500°C for 1 h, followed by the H₂ reduction for 1 h at different temperatures (200-600°C) (4, 11).

Figure 1(1) shows the XRD patterns of the catalyst (Ta/Ni = 2) prepared by the citrate method. The broad background peak around 20° is due to the amorphous SiO₂ used as the support. After the calcination at 600°C, the diffraction peaks in Fig. 1(1) indicate essentially a single phase of columbite NiTa₂O₆ structure, as registered in JCPDS (13), although small peaks of NiO were also observed. So far as the authors are aware, no work has been performed for the preparation of NiTa₂O₆ supported on SiO₂. As shown in Fig. 1(2), when the Ta/Ni ratio was increased from 2 to 4, the intensities of the NiO peaks decreased significantly. Moreover, the peaks of NiTa₂O₆ became larger, which suggests that the formation of NiTa₂O₆ was more complete in the catalyst (Ta/Ni = 4).

Figure 2 shows the XRD patterns of the Ta₂O₅-Ni/SiO₂ catalyst prepared by the conventional impregnation method. In this case, no appreciable formation of NiTa₂O₆ was observed after calcination at 600°C. As shown in Fig. 2(2), the calcination at the higher temperature (700°C) resulted in the formation of mixed phases of NiTa₂O₆, Ta₂O₅, and NiO on SiO₂. This result suggests that more intimate mixing between Ni and Ta components and higher homogeneity were achieved by using the citrate solutions (chemical mixing method (13)).

Figures 3 and 4 show the H₂ reduction behavior of

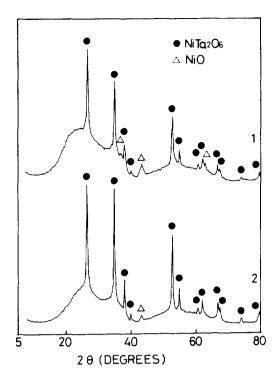


FIG. 1. X-ray diffraction patterns of the nickel tantalum oxide supported on SiO_2 prepared by the citrate method (calcined in air at 600°C): (1) Ta/Ni = 2 and (2) Ta/Ni = 4.

NiTa₂O₆ on SiO₂. No reduction of the NiTa₂O₆ crystallite was observed after H₂ treatment at 500°C. Small parts of the NiTa₂O₆ crystallites may be reduced by H₂ treatment at 600°C, because the intensities of the NiTa₂O₆ peaks

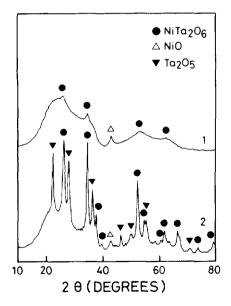


FIG. 2. X-ray diffraction patterns of the Ta_2O_5-Ni/SiO_2 catalyst prepared by the conventional impregnation method (Ta/Ni=2) after calcination in air at (1) 600°C and (2) 700°C.

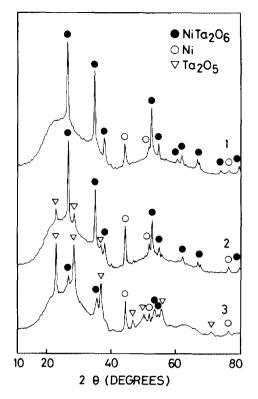


FIG. 3. X-ray diffraction patterns of the NiTa₂O₆/SiO₂ catalyst (Ta/Ni = 2) after H₂ treatment at (1) 500°C, (2) 600°C, and (3) 700°C.

became smaller, as shown in Fig. 3(2) and Fig. 4(2). The decomposition of the NiTa₂O₆ compound was clearly observed by H₂ reduction at 700°C, as shown in Fig. 3(3) and Fig. 4(3). These results show that the NiTa₂O₆ compound is more tolerant in H₂ than the NiNb₂O₆ compound, the decomposition of which is initiated by H₂ reduction at 500°C (11). As also shown in Figs. 3 and 4, NiO was reduced to Ni metal by the H₂ treatment at 500 or at 600°C. The intensities of the Ni peaks were much smaller for the catalyst (Ta/Ni = 4). It should be noted that no big increase of the intensities of the Ni peaks was observed in Fig. 4(3), even though the NiTa₂O₆ was completely decomposed on SiO₂ by the reduction at 700°C. Highly dispersed Ni (which could not be detected by XRD method) was formed by the reduction of the NiTa₂O₆ compound. Redispersion of metal by the decomposition of such ternary-oxide compounds is one of the typical behaviors of the structural change during the oxidation-reduction treatments (1-9).

Figure 5 shows the ethane hydrogenolysis activities of the NiTa₂O₆/SiO₂ catalyst. In these measurements, the catalyst with the Ta/Ni ratio of four was chosen because the increase of the Ta/Ni ratio resulted in more complete formation of NiTa₂O₆ on SiO₂. The presence of excess NiO would not be acceptable for the activity measure-

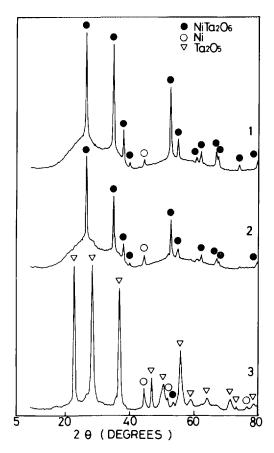


FIG. 4. X-ray diffraction patterns of the $NiTa_2O_6/SiO_2$ catalyst (Ta/Ni = 4) after H_2 treatment at (1) 500°C, (2) 600°C, and (3) 700°C.

ments of the NiTa₂O₆/SiO₂ catalyst, because NiO is reduced to Ni metal by H₂ treatment even at 400°C and Ni metal has a high activity for this reaction (11). In practice, for the catalyst (Ta/Ni = 4) there was no measurable activity of the ethane hydrogenolysis reaction within the range of reaction temperatures studied (up to 500°C (4)), unless the catalyst was treated in H₂ at 600°C or at the higher temperature (e.g., 700°C). This result suggests that the ethane hydrogenolysis activity of NiTa₂O₆ particles on SiO₂ is very low (the rate is less than 10^{-9} molecule/ total Ni atom/s). Once the catalyst was reduced at 600°C, the catalyst showed some activities (Nos. 1 and 2 in Fig. 5) after the O₂ treatment at 500°C followed by low-temperature reduction (LTR) at 200 and 300°C. However, the activity decreased severely after high-temperature reduction (HTR) at 500 and 600°C (Nos. 3 and 4 in Fig. 5). After NiTa2O6 compound was decomposed by HTR at 700°C, the drastic change in the activity was observed again as the function of the H₂ reduction temperature (Nos. 5 to 8 in Fig. 5). These results demonstrate that a typical SMSI behavior (7, 16) is induced by the reduction of the NiTa₂O₆/SiO₂ catalyst.

It is interesting to note that the SMSI behavior was observed (Nos. 1 to 4 in Fig. 5) even though the NiTa₂O₆ particles on SiO₂ were not largely decomposed after HTR at 600° C (see Fig. 4(2)). The partial reduction of the NiTa₂O₆ particles may be sufficient to induce a strong metal–oxide (Ni–TaO_x) interaction. The degree of activity suppression after HTR at 600° C is more than four orders of magnitude, compared with that after LTR at 200° C. For the NiNb₂O₆/SiO₂ catalyst, the activity change was about three orders of magnitude between LTR at 200° C and HTR at 600° C (11, 17). Therefore, the extent of the metal–oxide (Ni–TaO_x) interaction appears to be stronger than that induced by the decomposition of the NiNb₂O₆ compound.

Summing up, a strong Ni-TaO_x interaction was formed by the reduction of NiTa₂O₆. The catalytic properties of such ternary oxides, as well as the chemical changes after

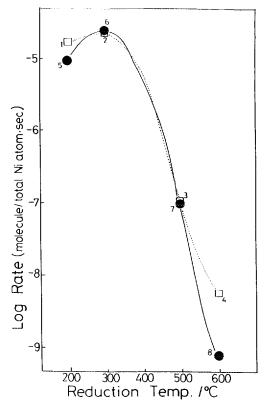


FIG. 5. Changes in the ethane hydrogenolysis activity (at 162° C) after the sequential oxidation-reduction treatments of the NiTa₂O₆/SiO₂ catalyst (Ta/Ni = 4): \Box , after the catalyst was treated in H₂ at 600° C, the activity measurements (Nos. 1 to 4) were performed; \bullet , after the catalyst was treated in H₂ at 700° C, the activity measurements (Nos. 5 to 8) were performed. Before each activity measurement, the catalyst was treated in O₂ at 500° C followed by H₂ treatment at the temperature shown in the x-axis in the figure.

the decomposition by H_2 reduction, deserve further attention.

ACKNOWLEDGMENTS

The authors are grateful to Dr. T. Ushikubo, Mitsubishi Kasei Co. Ltd., for providing us with an aqueous tantalum oxalate solution. This work was partly supported by the Iketani Foundation.

REFERENCES

- Kunimori, K., Hu, Z., Uchijima, T., Asakura, K., Iwasawa, Y., and Soma, M., Catal. Today 8, 99 (1990).
- Hu, Z., Wakasugi, T., Maeda, A., Kunimori, K., and Uchijima, T., J. Catal. 127, 276 (1991).
- 3. Kunimori, K., Wakasugi, T., Hu, Z., Oyanagi, H., Imai, H., Asano, H., and Uchijima, T., Catal. Lett. 7, 337 (1990).
- Hu, Z., Nakamura, H., Kunimori, K., Asano, H., and Uchijima, T., J. Catal. 112, 478 (1988).
- Hu, Z., Nakamura, H., Kunimori, K., Yokoyama, Y., Asano, H., Soma, M., and Uchijima, T., J. Catal. 119, 33 (1989).
- Kunimori, K., Nakamura, H., Hu, Z., and Uchijima, T., Appl. Catal. 53, L11 (1989).
- 7. Kunimori, K., Arakawa, H., Uchijima, T., in "Studies in Surface Science and Catalysis," Vol. 54, p. 144. Elsevier, Amsterdam.
- Kunimori, K., Wakasugi, T., Yamakawa, F., Oyanagi, H., Nakamura, J., and Uchijima, T., Catal. Lett. 9, 331 (1991).
- 9. Kunimori, K., Oyanagi, H., Shindo, H., Ishigaki, T., and Uchijima,

- T., in "Proceedings, 10th International Congress on Catalysis, Budapest, 1992" (L. Guczi, F. Solymosi, and P. Tetenyi, Eds.), p. 2038. Akadèmiai Kiádo, Budapest, 1993.
- 10. Weissman, J. G., Ko, E. I., and Wynblatt, P., J. Catal. 125, 9 (1990).
- Kunimori, K., Oyanagi, H., and Shindo, H., Catal. Lett. 21, 283 (1993).
- Yin, Y. G., Wakasugi, T., Shindo, H., Ito, S., Kunimori, K., and Uchijima, T., Catal. Lett. 9, 43 (1991).
- Yin, Y. G., Wakasugi, T., Shindo, H., Uchijima, T., and Kunimori, K., Bull. Chem. Soc. Jpn. 65, 3218 (1992).
- 14. Ushikubo, T. and Wada, K., Appl. Catal. 67, 25 (1990).
- 15. Ushikubo, T. and Wada, K., J. Catal. 148, 138 (1994).
- Haller, G. L., and Resasco, D. E., in "Advances in Catalysis," Vol. 36, p. 173. Academic Press, New York, 1989.
- Kunimori, K., Shindo, H., Oyanagi, H., and Uchijima, T., Catal. Today 16, 387 (1993).

D. Nishio

H. Shindo

K. Kunimori¹

Institute of Materials Science University of Tsukuba Tsukuba, Ibaraki 305 Japan

Received March 14, 1994; revised August 25, 1994

¹ To whom correspondence should be addressed.